miércoles, 16 de mayo de 2012

MICROSCOPIO ELECTRONICO


Un microscopio electrónico es aquél que utiliza electrones en lugar de fotones o luz visible para formar imágenes de objetos diminutos. Los microscopios electrónicos permiten alcanzar ampliaciones hasta 5000 veces más potentes que los mejores microscopios ópticos, debido a que la longitud de onda de los electrones es mucho *menor que la de los fotones "visibles".
El primer microscopio electrónico fue diseñado por Ernst Ruska y Max Knoll entre 1925 y 1930, quiénes se basaron en los estudios de Louis-Victor de Broglie acerca de las propiedades ondulatorias de los electrones.
File:Elektronenmikroskop.jpgUn microscopio electrónico, como el de la imagen, funciona con un haz de electrones generados por un cañón electrónico, acelerados por un alto voltaje y focalizados por medio de lentes magnéticas (todo ello al alto vacío ya que los electrones son absorbidos por el aire). Los electrones atraviesan la muestra (debidamente deshidratada) y la amplificación se produce por un conjunto de lentes magnéticas que forman una imagen sobre una placa fotográfica o sobre una pantalla sensible al impacto de los electrones que transfiere la imagen formada a la pantalla de un ordenador. Los microscopios electrónicos sólo se pueden ver en blanco y negro, puesto que no utilizan la luz, pero se le pueden dar colores en el ordenador. Como se puede apreciar, su funcionamiento es semejante a un monitor monocromático.

FULLERENOS


Qué son los fullerenos
El hallazgo casual del fullereno se produjo al irradiar un disco de grafito con un laser y mezclar el vapor de carbono resultante mediante una corriente de helio. Cuando se examinó el residuo cristalizado, se encontraron moléculas constituidas por 60 átomos de carbono. Intuyendo que estas moléculas tenían una forma semejante a la cúpula geodésica construida con motivo de una Exposición Universal en Montreal en 1967 por el arquitecto Buckminster Fuller, fueron nombradas como Buckminsterfullerenos o más comunmente como fullerenos
Se trata de un material obtenido por interacción de átomos de carbono C60 en fase gaseosa, logrando que los átomos de carbono se unieran en hexágonos y con dobles enlaces resonantes entre átomos de carbono vecinos, como si se tratara del benceno.
En la Unión de Arizona y en el Instituto Max Planck, a través de descargas eléctricas con electrodos de grafito en atmósfera de helio y disolución en tolueno, pudo obtenerse un polvo que permitió su estudio mediante espectrometría infrarroja-resonancia magnética nuclear y difracción de rayos X. Así se pudo identificar el Fullereno C60 y definir su estructura por medio de los típicos modelos orgánicos (12 pentágonos - 20 hexágonos con átomos de carbono tetravalente en los vértices). Otras estructuras se fueron descubriendo desde los C16 a C60 que pudieron corroborar para el más escéptico la estructura de balón similar a la pelota olímpica del fútbol mundial. En esa configuración los átomos de carbono de los hexágonos tienen dobles enlaces resonantes entre átomos vecinos como si se tratara del benceno.
Fullereno
Aplicaciones
Los polímeros son, sin duda, uno de los materiales que han encontrado una mayor aplicación debido a sus múltiples propiedades, así como también por su fácil procesabilidad y manejo. Gracias a la incorporación de fullerenos en los polímeros, se conseguirían propiedades electroactivas y de limitación óptica. Esto podría tener sobre todo aplicación en recubrimiento de superficies, dispositivos conductores y en la creación de nuevas redes moleculares.
También son de aplicación en el campo de la medicina, gracias a sus propiedades biológicas. A este respecto, se consiguió que un fullereno soluble en agua mostrara actividad contra los virus de inmunodeficiencia humana que causan el SIDA.
Toxicidad
Considerando la reactividad de los fullerenos, éstos se tornan potencialmente tóxicos sobre todo si se toma en cuenta que son materiales lipofílicos que tienden a ser almacenados por los organismos en zonas de tejidos grasos. De ahí que Eva Oberdorster (2004) haya corroborado que los fullerenos como el C60 pueden inducir un estrés oxidante en los cerebros de los peces róbalo. Más aun, Lovern y Klaper (2006) sugieren un considerable grado de mortalidad del Daphnia Magna (un diminuto crustáceo, popular alimento para peces de acuario, y usualmente utilizado por su sensibilidad en estudios de ecotoxicológicos) cuando son expuestos a nanopartículas de dióxido de titanio (TiO2) y al fullereno C60.

NANOTUBO


Definición de un nanotubo
Los nanotubos de carbono de otros elementos representan probablemente hasta el momento el más importante producto derivado de la investigación en fullerenes (los científicos hispanos no se ponen de acuerdo sobre la traducción de la palabra fullerene - en distintos trabajos se pueden encontrar la palabra original, o fullerenos o fulerenos...Nosotros utilizaremos siempre la original utilizado en los círculos de investigadores, para así evitar confusión). 

Los nanotubos se componen de una o varias láminas de grafito u otro material enrolladas sobre sí mismas. Algunos nanotubos están cerrados por media esfera de fullerene, y otros no están cerrados. Existen nanotubos monocapa (un sólo tubo) y multicapa (varios tubos metidos uno dentro de otro, al estilo de las famosas muñecas rusas). Los nanotubos de una sola capa se llaman single wall nanotubes (SWNTS) y los de varias capas, multiple wall nanotubes (MWNT)

Los nanotubos tienen un diámetro de unos nanometros y, sin embargo, su longitud puede ser de hasta un milímetro, por lo que dispone de una relación longitud:anchura tremendamente alta y hasta ahora sin precedentes.
La investigación sobre nanotubos de carbono es tan apasionante (por sus múltiples aplicaciones y posibilidades) como complejo (por la variedad de sus propiedades electrónicas, termales y estructurales que cambian según el diámetro, la longitud, la forma de enrollar...).

Para comprender mejor los nanotubos, pueden ver esta presentación interactiva de nanotubo que hemos encontrado en la excelente página sobre nanoestructuras de carbono publicado por el Profesor V.H. Crespo de la Universidad Penn State.

Los nanotubos de carbono son las fibras más fuertes que se conocen. Un solo nanotubo perfecto es de 10 a 100 veces más fuerte que el acero por peso de unidad y poseen propiedades eléctricas muy interesantes, conduciendo la corriente eléctrica cientos de veces más eficazmente que los tradicionales cables de cobre
El grafito (sustancia utilizada en lápices) es formado por átomos de carbono estructurados en forma de panel. Estas capas tipo-panel se colocan una encima de otra. Una sola capa de grafito es muy estable, fuerte y flexible. Dado que una capa de grafito es tan estable sola, se adhiere de forma débil a las capas al lado, Por esto se utiliza en lápices - porque mientras se escribe, se caen pequeñas escamas de grafito.

En fibras de carbono, las capas individuales de grafito son mucho más grandes que en lápices, y forman una estructura larga, ondulada y fina, tipo-espiral. Se pueden pegar estas fibras una a otras y formar así una sustancia muy fuerte, ligera (y cara) utilizada en aviones, raquetas de tenis, bicicletas de carrera etc.
Pero existe otra forma de estructurar las capas que produce un material más fuerte todavía, enrollando la estructura tipo-panel para que forme un tubo de grafito. Este tubo es un nanotubo de carbono.
Los nanotubos de carbono, además de ser tremendamente resistentes, poseen propiedades eléctricas interesantes. Una capa de grafito es un semi-metal. Esto quiere decir que tiene propiedades intermedias entre semiconductores (como la silicona en microchips de ordenador, cuando los electrones se muevan con restricciones) y metales (como el cobre utilizado en cables cuando los electrones se mueven sin restricción). Cuando se enrolla una capa de grafito en un nanotubo, además de tener que alinearse los átomos de carbono alrededor de la circunferencia del tubo, también las funciones de onda estilo mecánica cuántica de los electrones deben también ajustarse. Este ajuste restringe las clases de función de onda que puedan tener los electrones, lo que a su vez afecta el movimiento de éstos. Dependiendo de la forma exacta en la que se enrolla, el nanotubo pueda ser un semiconductor o un metal.
Definición de un nanotubo de carbono 
qué es un nanotubo
© Dr. Peihong Zhang, UC Berkeley, EE.UU

NANOMATERIALES


1. INTRODUCCIÓN

El término Nanomateriales engloba todos aquellos materiales desarrollados con al menos una dimensión en la escala nanométrica. Cuando esta longitud es, además, del orden o menor que alguna longitud física crítica, tal como la longitud de Fermi del electrón, la longitud de un 􀂾 Materiales nanoestructurados
Cerámicas nanoestructuradas como bio-implantes; imanes permanentes de alta temperatura para motores de aviones; materiales ferromagnéticos para aplicaciones como imanes blandos, almacenamiento de la información, válvulas de espín magnetoresistivas, refrigeración; Mg y Ti nanocristalino como catalizadores para automoción basada en hidrógeno; zeolitas nanoporosas y materiales metalorgánicos para almacenamiento de hidrógeno; sensores y actuadores basados en MEMS y NEMS.

·          * Nanopartículas y Nanopolvos
Las actuaciones a desarrollar se orientan en seis campos diferentes
− Energía, células solares basadas en TiO2, almacenamiento de hidrógeno con hidruros metálicos, mejora de electrodos para pilas;
− Biomédico, liberación de fármacos por inahalación particularmente insulina, crecimientos óseos, tratamientos anticáncer, recubrimientos para implantes, agentes de contraste para diagnóstico por imagen…
− Ingeniería, herramientas de corte, liberación controlada de herbicidas y pesticidas, sensores químicos, tamices moleculares, polímeros compuestos reforzados, aditivos para lubricantes, pigmentos, vidrios autolimpiables basados en TiO2, tintas magnéticas y conductoras;
− Artículos de consumo, materiales para el deporte, recubrimiento de vidrios, textiles repelentes de agua y de suciedad;
− Medio ambiente, tratamiento de aguas basados en fibras de alúmina y en procesos fotocatalíticos de TiO2, recubrimientos autolimpiantes, recubrimientos antirreflectantes, cerámicas y azulejos;
− Electrónica, partículas magnéticas para memorias de alta densidad, partículas magnéticas para apantallamientos EMI, circuitos electrónicos NRAM mediante Cu y Al, ferrofluidos, pantallas con dispositivos de emisión basados en óxidos conductores.

·         * Nanocápsulas
Liberación de fármacos, industria de la alimentación, cosméticos, tratamiento de aguas residuales, componentes de adhesivos, aditivos aromáticos en tejidos, fluidos magnéticos.
·          Materiales nanoporosos
Membranas con control de poro a nivel atómico, catalizadores como reductores de emisión de contaminantes, catalizadores como elementos de auto-diagnóstico y auto-reparación en materiales, aislantes, aplicaciones medioambientales para reducción de emisiones, purificación de aguas, eliminación de contaminantes, atrapado y eliminación de metales pesados, producción de nanopartículas estructuradas, células solares orgánicas, supercondensadores para almacenamiento de energía, almacenamiento de gases (hidrógeno, metano, acetileno), ingeniería de tejidos para aplicaciones médicas, liberación controlada de fármacos, bioimplantes.

·         * Nanofibras
Filtros, tejidos, cosméticos, esterilización, separaciones biológicas, ingeniería de tejidos, biosensores, órganos artificiales, implantes, liberación controlada de fármacos.

·         * Fullerenos
Lubricantes, reforzado de polímeros y fibras textiles, catalizadores, electrodos para células solares, dispositivos fotónicos, baterías de Li de larga duración.
·         * Nanotubos de carbono

Polímeros conductores, polímeros y cerámicas altamente tenaces, apantallamientos electromagnéticos, electrodos para baterías, componentes para membranas y células solares, FEDs, nano-osciladores en los giga-hertz, puntas nanoscópicas, músculos artificiales.

·         * Nanohilos
Manipulación de elementos biológicos en campos magnéticos, FETs, sensores, detectores, LEDs, almacenamiento de datos de alta densidad, nanodispositivos opto-electrónicos.

·         * Dendrímeros
Células artificiales, liberación controlada y dirigida de fármacos, agentes de contraste, toners para impresoras por laser, sensores para diagnóstico, detectores, electrónica molecular, agentes descontaminadores y de filtración particularmente de iones metálicos, adhesivos, lubricantes y baterías en la nanoescala.

jueves, 10 de mayo de 2012

LA EVOLUCIÓN DE LOS METALES A LO LARGO DE LA HISTORIA


El investigador que se dedica a estudiar la prehistoria, al no poder contar con documentos escritos, trata de reconstruir el pasado basándose en los restos culturales encontrados. Para poder establecer la antigüedad de estos restos, se utilizan métodos especiales. Sin embargo, las fechas en el período prehistórico son siempre aproximaciones.
Uno de los primeros métodos desarrollados fue la dendrocronología, que consiste en observar los anillos de crecimiento presentes al cortar un tronco de árbol. Analizando entonces los troncos, o los elementos hechos con madera de los mismos, es posible deducir su antigüedad pues a cada año corresponde un determinado tipo de anillo presente en todos los árboles.
Otra forma de datación es el análisis de los sedimentos de materiales de origen glacial, que han sido arrastrados por los ríos y torrentes en los deshielos primaverales, hacia el fondo de los lagos. Estudiándolos, se pueden conocer fechas relativas a la vida de los hombres que habitaron sobre esos materiales.
Sin embargo, los métodos más exactos son los desarrollados en tos últimos años, gracias a los adelantos de la física nuclear, como el del carbono-14, que mide lo que queda de carbono-14 en los restos encontrados, ya que todos los organismos vivos incorporan este elemento durante su vida y lo van perdiendo paulatinamente luego de muertos. Como el ritmo de esta pérdida puede ser medido, conociendo lo que queda en los diferentes materiales se sabrá su antigüedad. Otros métodos basados en la física nuclear son el del potasio argón, que se utiliza para poner fecha a las rocas volcánicas muy antiguas, y latermoluminiscencia que posibilita establecer la fecha de cocción de las cerámicas.
La edad de piedra
Es la etapa más antigua de la humanidad, en ella aparece la piedra como el principal material trabajado por el hombre.
Esta edad comprende dos períodos bien definidos, el paleolítico (de paleo: “antiguo” y litos: “piedra) o edad de piedra antigua y el neolítico (de neo: “nuevo” y litos: “piedra’) o edad de piedra nueva. Entre uno y otro período, se encuentra un período de transición: el mesolítico (de meso. “entre” y litos: “piedra”).
El Paleolítico: Es el período que se extiende desde hace aproximadamente 2.000.000 de años, hasta 10.000 años atrás. Durante el mismo, los hombres comienzan a fabricar las primeras herramientas, en un principio muy simples, las que fueron perfeccionando cada vez más.
La preocupación principal era conseguir alimentos y defenderse de los grandes animales que recorrían la Tierra, o de cualquier otro peligro que la naturaleza presentara. La forma de vida era nómade y los hombres se alimentaban de la carne que obtenían de animales muertos, y de los frutos, hojas o raíces que pudiesen recolectar. No producían su alimento, sólo lo consumían. Con el tiempo aprendieron a cazar y entonces fabricaron armas y elaboraron técnicas de caza, actividad que realizaban en cuadrillas, que requerían de una mínima organización social. Para su mejor estudio, el período paleolítico puede separarse en tres etapas: paleolítico interior, medio y superior.
Paleolítico inferior: En esta etapa el hombre vagaba por la Tierra en pequeños grupos, probablemente construyendo chozas para protegerse cuando el clima era cálido y refugiándose en cuevas o en cavernas si el clima era frío, pues la naturaleza ha provocado en los últimos 3.000.000 de años importantes cambios climáticos en los que se sucedieron períodos cálidos, seguidos de períodos fríos conocido como glaciaciones , en la que grandes masas de hielo cubrieron extensas superficies continentales.
La principal herramienta era el hacha de mano que se usaba para cazar, raspar, y cortar. En esta época el hombre descubrió, tal vez la de manera accidental, el fuego, que le permitió cocinar sus alimentos , alejar a las fieras, protegerse del frío e iluminarse en la oscuridad.
Paleolítico Medio: En esta etapa los grupos humanos se hacen más numerosos y perfeccionan sus herramientas fabricando puntas de flechas, raspadores y hachas de mano. Aparecen también los primeros vestigios de una cultura espiritual pues idearon ritos fúnebres. Enterraban a sus muertos en tumbas especiales junto a trozos de carne y otros elementos, lo que mostraría que los hombres, ya en esta época, habían imaginado alguna forma de continuación de la vida.
Paleolítico superior: Aquí los hombres están mejor equipados para enfrentar los peligros y sacar ventajas de la naturaleza. A la piedra se agregan el uso del hueso y del marfil, materiales con Los que se fabrican instrumentos cada vez más específicos, apareciendo entonces punzones o buriles para agujerear, raspadores, arpones para pescar (ya que se incorpora esta actividad), lámparas de mano en las que se quemaba grasa, para iluminación, y primitivas agujas que, enhebradas con crines, permitían coser pieles.
Se cazaban mamuts, renos, bisontes, vacunos salvajes y caballos. Para ello el hombre incorporó el arco y la flecha y los dardos. La caza se realizaba en grupo, existiendo una cierta división de trabajo entre los sexos. Había algunos intercambios entre las comunidades, lo que mostraría que los grupos no estaban totalmente aislados entre sí.
Los enterramientos continúan con ritos más complejos. Se han encontrado pequeñas esculturas que se usaban, probablemente en ritos relacionados con la fertilidad y pinturas de animales, sobre todo mamuts, bisontes y renos, en la superficie rocosa de algunas cuevas. A este tipo de pintura sobre roca se la denomina “rupestre” y constituye una de las primeras manifestaciones artísticas de la humanidad.
El Mesolítico: Cuando finalizó la Era Glacial, la selva avanzó e invadió las grandes estepas. Esto produjo la emigración y algunas veces la desaparición de los animales que vivían en ella y que servían al hombre de alimento. Los grupos humanos, entonces, se diseminaron por la selva y se ubicaron en las orillas de los ríos. Sobrevivieron cazando animales salvajes, aves y peces. La madera, obtenida fácilmente en las selvas, se utilizó con intensidad. En las zonas frías aparecen los trineos, tirados primero por hombres y luego por perros. Los hombres continuaron siendo nómades, pero en algunas regiones, con suficiente agua y alimentos, aparecen asentamientos más estables.
El Neolítico: Comenzó hace aproximadamente 10.000 años y sus transformaciones son tan importantes que los historiadores las llaman “la revolución neolítica”. El hombre comienza a producir sus alimentos a partir de la domesticación de plantas y animales: el paso decisivo fue plantar deliberadamente semillas en un suelo adecuado y cultivar la tierra. Las primeras plantas obtenidas fueron el trigo y la cebada, a las que se incorporaron luego el arroz y las arvejas. Los excedentes de la cosecha se almacenaban en graneros, permitiendo que los hombres pudiesen guardar alimentos para los períodos de escasez. También aparece la alfarería, como una necesidad, pues había que fabricar recipientes para contener las semillas y los granos.
De algunas plantas, como por ejemplo el lino y el algodón, se obtendrán posteriormente fibras, que hiladas en los husos y tejidas en telares se convertirán en telas, dando inicio a la industria textil.
Con respecto a los animales, probablemente haya sido la observación de los mismos lo que puso de manifiesto que esas bestias podían ser domesticadas y convertirse en una importante reserva de alimentos y pieles sin necesidad de matarlos, como es el caso del ovino, que provee lana y leche.
Las viviendas estuvieron hechas en barro, cañas, leños o piedras, y las herramientas para construirlas fueron más específicas. Entre ellas se destacó el “hacha de piedra pulida’, que se realizaba en una roca de grano fino y luego se afilaba por medio de un pulido a base de arena. El dominio de la agricultura hizo a los hombres sedentarios y aparecen, entonces, las primeras aldeas y con ellas el crecimiento de los grupos familiares, la división del trabajo y la organización social.
Edad de los metales : Es la etapa en la cual el hombre descubre el uso de los metales y ¡os incorpora a su cultura para fabricar distintos elementos. Aparece entonces la metalurgia. Los historiadores reconocen tres edades de los metales, según el material usado con más intensidad: Edad de cobre, Edad de bronce y Edad de Hierro. El cobre fue el primer metal utilizado, seguido del bronce, cuando el hombre aprendió a fundir cobre con estaño. Con estos metales se hicieron cuchillos, espadas, puñales, vasijas, adornos, herramientas, etc. Por último apareció el hierro, pero el uso de este metal, que permitió la fabricación de armas, herramientas y otros elementos de gran dureza, se logró alcanzar recién en los tiempos históricos.
La prehistoria es entonces, es período fascinante de la humanidad donde todo está por hacerse y donde todo es posible.